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This work develops the mathematical model for a steerable binaural system that determines the in-

stantaneous direction of a sound source in space. The model combines system angular speed and

interaural time delays (ITDs) in a differential equation, which allows monitoring the change of

source position in the binaural reference frame and therefore resolves the confusion about azimuth

and elevation. The work includes the analysis of error propagation and presents results from a real-

time application that was performed on a digital signal processing device. Theory and experiments

demonstrate that the azimuthal angle to the sound source is accurately yielded in the case of hori-

zontal rotations, whereas the elevation angle is estimated with large uncertainty. This paper also

proves the equivalence of the ITD derivative and the Doppler shift appearing between the binau-

rally captured audio signals. The equation of this Doppler shift is applicable for any kind of motion.

It shows that weak binaural pitch differences may represent an additional cue in localization of

sound. Finally, the paper develops practical applications from this relationship, such as the synthe-

sizing of binaural images of pure and complex tones emitted by a moving source, and the genera-

tion of multiple frequency images for binaural beat experiments.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4923448]
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I. INTRODUCTION

One particularity of the auditory system in mammals is

its physical proximity with the vestibular system, responsible

for most of the animal balance and spatial orientation capaci-

ties. The interconnection of both different sensory systems

suggests that motion somehow contributes to complex forms

of analysis of the auditory scene and more particularly of

sound localization. In this paper, the authors want to give

evidence that the dynamics of head rotations play an impor-

tant role in three-dimensional (3D) sound localization. The

work starts from a reduced binaural system capable of sens-

ing interaural time delays (ITDs) and angular velocity and

uses a differential equation to describe the involved dynam-

ics, which forms a special view on ITDs by considering their

variability over time. It is shown that the knowledge of three

quantities, the instantaneous ITD, its first derivative with

respect to time and the rotation speed of the binaural system

unambiguously and robustly yields the azimuth in the case

of a horizontal rotation, thus solving the back/front confu-

sion. Additionally and much more unintuitively, it is demon-

strated that theoretically the magnitude of the elevation is

also yielded. The work includes the analysis of error propa-

gation and proves that the elevation can only be validly esti-

mated if the sound source is not located in the horizontal or

the median plane.

Furthermore, the paper presents results from a physi-

cal experiment of the model using a high-speed digital sig-

nal processing device. Finally, the authors demonstrate

that one can determine the frequency modulation applied

to the original acoustic signal because of the effect of head

rotation. This might be considered as an additional cue in

sound localization, expressing itself as a Doppler shift

between the left and right signals. This binaural Doppler

shift is proven to be mathematically equal to the ITD

derivative.

II. ROTATIONS AND SOUND LOCALIZATION

A. Fundamentals

For an immobile binaural system, the knowledge of

interaural time delays (ITDs) cannot solve the localiza-

tion problem better than yielding a lateral surface of all

possible locations of the sound source for a specific

delay. This surface represents the sheet of a hyperboloid

of confusion, which is generated by revolving one branch

of the hyperbola that can be constructed for a certain

value of the ITD upon two foci formed by the acoustic

receivers.1 Asymptotically, the hyperbolic sheet changes

to a conical surface. The confusion in spatial localization

of sound therefore only disappears if other cues are

available.

In their mathematical and experimental study, Kneip

and Baumann2 have analyzed and proven the utility of delib-

erate rotations of a binaural system for the determination of

the direction in space of a static sound source. The described

active method is based on the measurements of ITDs before

and after a single determined rotation of the interaural base-

line about the z or y axis. The equations show that the angu-

lar component of the sound vector is unambiguouslya)Electronic mail: claude.baumann@education.lu
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determined in the plane of rotation, whereas the orthogonal

component appears in two symmetric instances. If the inter-

aural axis is rotated about the z axis, as indicated on Fig. 1,

the azimuth b is exactly yielded and the elevation w is found

with ambiguity, which means that the magnitude of the ele-

vation angle is known, but its sign is not. (Note that unlike

the cited paper, this text uses the symbol w for the elevation.

See Nomenclature.)

The present work starts from this viewpoint and deduces

further equations from the properties of the cone of confu-

sion. The following mathematical development proves that

the combination of continuous measurements and differen-

tiation of ITDs, and the measurements of the rotation speed

in a given plane determines the angular component of the

sound vector in that particular plane. Consequently, the mag-

nitude of the second orthogonal component also is deter-

mined, whereas its sign is not. The disambiguation of this

persistent uncertainty consists of clarifying whether the

sound source is located in the upper/lower, or the frontal/

backward hemispheres—depending on the rotation plane.

This requires little additional information that can be easily

obtained by complementary means, especially through a sin-

gle subsequent orthogonal rotation.

The mathematical description restricts the analysis to a

simple binaural sensor made of two omnidirectional micro-

phones in the free field, augmented with a sensor for meas-

uring angular velocity. Neither pinnae, nor head, nor torso

are involved. Therefore, no spectral or level differences are

considered. It is also assumed that the sound source, a single

immobile spot in space, is located in the far field. According

to Kneip and Baumann,2 deviations between the asymptotic

cone of confusion and the correct hyperbolic surface are less

than 1� for sound distances greater than 4k, and less than

0.1� for distances greater than 12k, where 2k is the micro-

phone spacing. Furthermore, the binaural system rotates

about the z axis, while the speed of the microphone

movements is very slow in comparison to the speed of

sound. It must be underlined that the orthogonal system of

coordinates ðO; x; y; zÞ is always referenced to the binaural

system using the interaural baseline as x axis. This must not

be confused with the “world” reference frame. Because the

coordinate system may be arbitrarily fixed in the median

plane (O, y, z), it is obvious that the present study in fact

covers any case of rotation of the binaural system, except the

one about the x axis. It should be noted that the choice of

this head referencing is consistent with the findings of

Altmann et al.,3 who concluded from their neurophysiologi-

cal study that humans process spatial changes of sound

source position in a head-related coordinate system.

This work is based on the insight that has been gained

through the research about natural sound localization in

combination with head rotations by van Soest,4 who stated

that through head movements, according to the phase theory,

the sound direction is given by the intersectional line of suc-

cessive cones of confusion. The approach of van Soest4 has

been verified by Reid and Milios5 using an approximation

method running on a digital signal processing device.

Wallach6 showed that head rotations provide essential infor-

mation about the azimuth and the elevation of the sound

source. His hypotheses have been testified by Perret and

Noble7 and Wightman and Kistler,8 for instance. Thurlow

et al.9 observed three types of head rotations about each of

the main axis that contribute to the localization of a sound

source in space. Hill et al.10 developed a simulation model

in order to show that back/front ambiguity may be resolved

through ITD variations arising from head rotation.

Lambert11 developed a theory of sound-source localiza-

tion in the horizontal plane using a function of the rate at

which the interaural time delay changes with respect to the

azimuthal angle. Rao and Xie12 worked out a mathematical

model, in order to prove that variations of ITDs caused by

head rotations represent a valuable localization cue in the

median plane (O, y, z). These authors used derivatives of

the ITD with respect to changes in azimuth and altitude. The

present work goes a step further by considering ITD deriva-

tives with respect to time, as azimuth and altitude are them-

selves functions of time.

Recent research by Macpherson13 confirms that in the

absence of spectral cues, vestibular information that

becomes available through head rotations represents the

dominant cue for back/front localization. If the head is not

allowed to move, interaural differences can only resolve the

lateral localization. However, the temporal dynamics related

to head rotations adds enough information to produce correct

back/front disambiguation, if the stimulus is presented for

more than �100 ms. Morikawa et al.14 report that band-

limited and band-unlimited white noise could be well local-

ized for sources in the horizontal plane, if head movements

were allowed. All subjects turned their heads in direction of

the source, without necessarily centering it after the rotation.

If the source was presented in the median plane (O, y, z),

subjects yawed their heads left and right, independently of

the elevation angle of the sound vector. Hirahara et al.15

used the Telehead, a steerable dummy head, in order to ver-

ify the impact of head rotation on sound localization. The

FIG. 1. Two microphones R and L, separated by distance 2 k, form a binau-

ral system, which is rotated in the horizontal plane about its center O by

angle hz. The sound source S and its associated horizontal projection Sxy

yield the azimuth angles b0 and b1 in the coordinate systems ðO; x0; y0Þ and

ðO; x1; y1Þ. The elevation w is constant during rotations about the z axis. The

angle /0 represents the direction to the sound source in the plane (R, L, S).
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Telehead was coupled to the listener’s head through a

motion sensor and followed the horizontal head rotation in

real-time. Listener and Telehead were located in different

experiment rooms, and the listener received sound stimuli

from the Telehead via headphones. Results showed that vol-

untary head rotations play a crucial role in sound

localization.

Blauert16 underlines that motional theories of sound

localization based on ITDs must necessarily be heterosen-

sory, which directly follows from the present equations.

Indeed, it is obvious that ITD detection alone can only dis-

criminate the angle / (cf. Fig. 1), which is the sound direc-

tion in the plane (R, L, S). Wallach6 and Kneip and

Baumann2 showed that the angle / represents a compound

made of the azimuth b and the elevation w of the sound

source. These three angles are related to each other through

a variant on Wallach’s formula,

cos / ¼ cos w cos b: (1)

The ITD s depends on the microphone spacing 2k, the

sound velocity c and the cosine of / following a variant on

von Hornbostel and Wertheimer’s17 equation using

smax ¼ 2k=c,

s ¼ smax cos /: (2)

These important relations, which are directly connected

to the definition of the cone of confusion, lead to the conclu-

sion that ITD measurements performed by an immobile bin-

aural system, incapable of monaural cues, can only

discriminate the magnitude of the azimuth in the case of

known elevation, or the magnitude of the elevation in the

case of known azimuth. The identity / ¼ 6b, which follows

for source locations in the horizontal plane has repeatedly

been exploited, in order to conceive robots able to track

sound sources in 2D. However, as the ambiguity of the sign

is unresolved in that equation, the robots must somehow get

additional information for correct back/front discrimination.

For instance, Andersson et al.18 solved the back/front ambi-

guity by using a spherical head. In addition to the measure-

ments of interaural phase differences (IPD)—an alternative

view upon temporal differences19—the device read interau-

ral level differences (ILDs) during the motion toward the

sound source. Portello et al.20 used a binaural sensor made

of two omnidirectional microphones in the free field. The

processing device detected ITDs and applied a complex

probabilistic algorithm, in order to have the robot track mo-

bile sound sources in the horizontal plane. These two proj-

ects typify comparable attempts of using binaural systems in

2D sound localization.

Although it is impossible to yield the exact magnitude

of the azimuth, if no other source of information is available

than ITD measurements, the sign of the actual ITD value s
unambiguously determines in which lateral hemisphere the

sound source is located. However, if the binaural system is

allowed to move, a simple and efficient 2D sound localiza-

tion strategy can be developed for a robot that additionally

solves the back/front ambiguity (cf. Table I). Basically, this

strategy exploits the lateral discrimination given by the sign

of s and rotates the robot accordingly, always ending in a

stable steady state where the robot will face the sound

source.

There is a metastable special case that appears with

this algorithm. A sound source that is initially located in

the rear section of the median plane represents an unstable

steady state. In such a condition, as ITDs actually are zero,

the robot will stop rotating according to the algorithm.

Yet, minimal perturbations will cause measurable non-zero

ITDs and launch the rotational movement toward the stable

steady state. Because the robot only reacts on lateral cues,

it does not matter if the sound source is located in a differ-

ent plane than the robot. The discussed algorithm is capa-

ble of physically localizing the horizontal sound direction

by considering changes of the ITDs that are due to the

robot’s motion. One can evaluate variations of ITDs with

respect to time by differentiating Eq. (2). The resulting

equation, Eq. (3), is true at any time and for any kind of

motion,

_sðtÞ ¼ �smax
_/ðtÞ sin /ðtÞ: (3)

In the case of a horizontal rotation, the elevation

remains invariant, and the derivative can be expressed with

Eq. (4):

_sðtÞ ¼ �smax cos wxbðtÞ sin bðtÞ: (4)

This derivative is proportional to the angular speed

xbðtÞ ¼ _bðtÞ and the sine of the azimuth b(t). The approach

of using determined rotations and differentiating ITDs with

respect to time for the sound localization problem introduces

unexpected features. For instance, the back/front ambiguity

may be solved without difficulty through the sign of the de-

rivative for a known direction of rotation (cf. Table II). Note

that this is true only if w 6¼ 6p=2, where cos w > 0. In the

other case, the sound source is located on the axis of rota-

tion, where no changes of s can occur.

It must be underlined that the azimuth b is always

expressed in the referential frame of the binaural system, as

indicated in Fig. 1. The consequence of this referencing is

expressed in Eq. (5) saying that a positive (anticlockwise)

TABLE I. Simple 2D sound localization algorithm.

If s > 0 then rotate to the right

If s < 0 then rotate to the left

If s ¼ 0 then stop rotating

TABLE II. Dynamically resolve the frontal ambiguity.

Perform a positive horizontal rotation of the binaural system in the “world”

reference

If _s > 0 then source is located in the frontal hemisphere

If _s < 0 then source is located in the backward hemisphere

If _s ¼ 0 then source is located on the frontal plane (O, x, z)

J. Acoust. Soc. Am. 138 (2), August 2015 Baumann et al. 637



rotation of the system corresponds to the negative summa-

tion of the rotation speed:

hz ¼ �
ðt1

t0

xbðtÞdt; (5)

during which time it moved from b0 to b1, so

b1 ¼ b0 � hz: (6)

This becomes more evident through the following

example. Assuming that the sound source is located at

b0¼ 45� and the rotation speed of the world frame is positive
_bworld ¼ 5�=s ð () _brobot ¼ �5�=sÞ. After 2 seconds, the

system frame has rotated anticlockwise by 10�. Observed

from the perspective of the binaural system, the sound source

has moved clockwise. Therefore the new azimuth is

b1¼ 35�. Also, the corresponding ITD values yield s1 > s0,

because the source has come closer to the right microphone.

Hence, the ITD derivative must be positive in that case.

For the case that sðtÞ 6¼ 0 and the elevation w 6¼ 6ðp=2Þ,
it follows that the relative variation of ITDs may be expressed

as [combining Eqs. (2), (1) and (4)]

_s tð Þ
s tð Þ ¼ �xb tð Þtan b tð Þ: (7)

In other words, the relative variation of ITDs is propor-

tional to the angular speed of the interaural axis in the hori-

zontal plane and the tangent of the azimuth. Equation (7)

proves that it is possible with the knowledge of the instant

ITD, its derivative and the rotation speed, to unambiguously

determine the azimuth at any moment. Because the sign of s
resolves the lateral ambiguity, Eq. (7) delivers a unique

value of b for any valid combination of _s, s, and xb.

Notably, the equation is independent of the sound velocity

and the microphone spacing.

It might be interesting to analyze the case, where the

system moved from b0 to b1 by integrating Eq. (7) over time

(disregarding the discussion about signs and domains),ðt1

t0

_s tð Þ
s tð Þ dt ¼

ðt1

t0

� _b tð Þtan b tð Þdt (8)

Using Eq. (6) and defining s0;1 ¼ sðt0;1Þ, Eq. (8) yields

(cf. Appendix A)

tan b1 ¼ cot hz �
s0

sin hzs1

: (9)

Therefore, if one measures two ITDs (s0 and s1) at

some arbitrary time difference and the angle hz through

which the microphones have moved in that time, one can

estimate the azimuthal location of the source b1 relative to

the microphone axis at the end time of the rotation. This

equation [Eq. (9)] has been worked out geometrically in the

cited work by Kneip and Baumann.2

B. Uncertainty analysis

The present paper does not discuss techniques for esti-

mating ITDs and rotation speed. ITD derivatives may be

obtained by applying appropriate numerical differentiation

methods in the case of digital signal processing. In such a

case, the relative uncertainty of the ITD derivative can be

written

D _s
j _sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ds
s

� �2

þ Dt

t

� �2
s

: (10)

As it may be supposed that the error in timing is negligible,

the uncertainty of the derivative may be expressed with

D _s ¼ j _sjDs
jsj : (11)

1. Uncertainty in azimuthal measurements

Rewriting Eq. (7),

b ¼ arctan � _s
sxb

� �
; s 6¼ 0; xb 6¼ 0; (12)

and using Eqs. (11) and (12), the error propagation in azi-

muth can be expressed applying the first order Taylor expan-

sion over several stages,21

Db ¼
���� @b@ _s

����D _s þ
���� @b@s

����Dsþ
���� @b@xb

����Dxb

¼
���� 2 sin b

cos w

���� Ds
smax

þ
���� sin 2b

2

����
����Dxb

xb

����: (13)

Figure 2 shows the influence of the elevation on the

uncertainty in azimuthal angle for typical values of the

involved parameters. The authors used a relative uncertainty

in xb of 10% and in the ITD of 2%. The uncertainty in azi-

muthal angle is smallest for sound sources in the horizontal

plane. Uncertainty in ITDs have a minor influence on azi-

muth estimations. The uncertainty dramatically grows as the

rotation speed slows to zero. This is not visible in Fig. 2 but

directly follows from Eq. (13).

2. Uncertainty in elevation angle

At any moment, the knowledge of the azimuth b allows

the determination of the absolute value of the elevation w,

FIG. 2. The uncertainties in azimuth Db, expressed in degrees, depend on

the azimuth and the elevation. In this graph the relative uncertainty in rota-

tion speed Dxb=xb ¼ 10% and in ITD Ds=smax ¼ 2%.
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independently of any motion of the binaural system.

However, the equations cannot discriminate whether the

sound source is located in the upper or lower hemisphere.

Disregarding the missing sign, uncertainty bounds in eleva-

tion can be estimated by combining Eqs. (1) and (2), in order

to form Eq. (14),

w ¼ arccos
s

smax cos b

� �
: (14)

The uncertainty in elevation is calculable through Eqs.

(13) and (14),

Dw ¼
���� @w@s

����Dsþ
���� @w@b

����Db

¼
���� 1

sin w cos b

���� Ds
smax

þ jcotw tan bjDb: (15)

Figure 3 shows the uncertainty in elevation in function

of the azimuth. Errors strongly depend on the elevation, and

rapidly grow, as b approaches 6p=2. Uncertainty in eleva-

tion is smallest for sound sources that are located on the

frontal plane, and greatest for sound sources located near the

horizontal or the median planes.

C. Experimental applications

In order to study the practical value of the described

dynamic localization model, the equations have been imple-

mented into a digital signal processing device with real-time

capacities. The binaural sensor was composed of two omnidir-

ectional Electret condenser microphones fixed on a rod and

two high gain audio amplifiers (cf. Fig. 4). Spacing 2k between

the microphones was 19.5 cm. The binaural sensor was

mounted on a motorized structure, which was horizontally ro-

tatable at variable angular speed between 0 and p rad/s. A ro-

tary encoder measured angular velocity and position for

control purposes at 0.5� resolution.

Experiments were performed in semi-anechoic room

conditions (empty cinema theater with unknown attenuation

coefficient) at different elevation angles. Sound waves were

emitted by a small music playing radio at a distance of 2 m

ð>12kÞ from the microphones. The digital signal acquisition

and processing device consisted of the National Instruments

(Austin, TX) myRIO
TM

embedded hardware device, a dual-

core real-time system based on a customizable field pro-

grammable gate array (FPGA).

ITDs were extracted from digitized audio signals by

finding the peak in the running cross-correlation function, as

proposed by Sayers and Cherry.22 In contrast to the method

applied by these authors, a sliding rectangular time-window

of 10 ms was used instead of the original exponential win-

dow. Because timing was critical, especially during fast

rotations of the binaural system, the normalized cross-

correlation function was calculated in the time domain

applying a fast recursive algorithm23 that allowed to produce

ITD at the audio sampling frequency fs¼ 20 kHz. Also, the

resolution in ITD measurement was 1=fs. In order to elimi-

nate bad cues, ITD values were prefiltered with an adaptive

digital filter using the degree of coherence as a weight (cf.

Blauert,16 p. 201). The windowing and prefiltering was about

40 ms. In the case of a rotation speed of 1 rad/s, this signified

an additional uncertainty less than 2.5� in appreciation of the

angle /. Such delay effects in localization have been

observed with human listeners. The existence of binaural

sluggishness suggests that ITD appreciation requires some

processing time in natural hearing as well. Grantham and

Wightman24 evaluate this delay between 44 and 243 ms.

ITDs were differentiated using a first-order polynomial

low-pass filter that was especially designed for the purpose.

Numerical differentiation requires particular precaution, as

the involved operations inevitably introduce truncation and

round off errors that may become excessively high.25

Moreover, because the underlying ITD function sðtÞ is

unmodeled, error-prone and susceptible to noise, simple

methods for computing the numerical derivative were not

helpful. Therefore, a least-square smoothing algorithm26 was

used, in order to guarantee sufficient noise suppression, low

distortion and zero-phase characteristics in the relevant

angular frequency band. This feature was essential, in order

to prevent that the filtering process would generate malign

FIG. 3. This graph evaluates the uncertainty in elevation Dw in function of

the azimuth at different elevation angles. (Identical conditions as explained

in Fig. 2.)

FIG. 4. The picture shows the steerable binaural system made of LEGO
TM

parts, microphones, amplifiers and uncased FPGA-based digital signal proc-

essing (DSP) device.
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phase shifts of the ITD derivative _sðtÞ with respect to sðtÞ,
which would cause misinterpretations of sound direction.

Applying Gauss’ method of the least-squares, under the

assumption of constant time steps Dt, a synchronized estima-

tion at current time ti ¼ iDt of the derivative is given by the

following discrete polynomial function p½i� for M consecutive

past values of the difference quotient q½j� ¼ ðs½j� � s½j� 1�Þ=
Dt (cf. Appendix E),

p i½ � ¼

XM�1

j¼0

6j� 2 M � 2ð Þ
� �

q j½ �

M M þ 1ð Þ : (16)

In order to reduce the number of computations for large

values of M, the filter was modified as follows.

The function, Eq. (16), can be rewritten,

p i½ � ¼ 6Siq i½ � � 2 M � 2ð ÞSq i½ �
M M þ 1ð Þ ; (17)

where at any time index i the summations Sq and Siq are

computed upon the latest M values of q,

Sq½i� ¼
XM�1

j¼0

q½j� and Siq½i� ¼
XM�1

j¼0

jðq½j�Þ: (18)

These sums can be calculated easily and independently

of M (in terms of computing time) with Eq. (19), which at

any time index i, exclusively considers the effects of the de-

parture of the oldest and the arrival of the most recent values

of the difference quotient stored in an M-sized first-in, first-

out (FIFO) data buffer with circular index,

Sq½i� ¼ Sq½ði� 1Þmod M� � qold½i� þ qnew½i�;
Siq½i� ¼ Siq½ði� 1Þmod M� � Sq½i� þMðqnew½i�Þ: (19)

(Note that the correctness of this algorithm can be dem-

onstrated without difficulty by induction.)

Figure 5 shows typical filtered measurements of ITD,

ITD derivative, and rotation speed. The measurements were

made at elevation w¼ 0. The robotic system was programmed

to perform a full revolution of the binaural baseline at differ-

ent angular speeds. Figure 6 displays the results of the estima-

tions that have been made by applying the model equations of

this paper. Visibly, the azimuth is well estimated in compari-

son with the measured position [standard deviation in azimuth

is rðb;w¼0Þ ¼ 0:2 rad]. By contrast, although expectedly,

because of the propagation of errors, the elevation of w¼ 0 is

estimated in the three experiments with mean l1 ¼ 0:6 rad

(standard deviation, r1 ¼ 0:3), l2 ¼ 0:4 rad ðr2 ¼ 0:4Þ, and

l3 ¼ 0:3 rad ðr3 ¼ 0:4Þ. A further experiment yielded for

FIG. 5. This graph depicts three exem-

plary experiments. ITDs are expressed

as relative values s=smax, and the

derivatives as _s=smax. Angular speed is

referenced to the binaural coordinate

system. Therefore, the sign is positive,

although the rotation of the binaural

system has been performed clockwise.

FIG. 6. This graph compares the calcu-

lated azimuth values with the reference

values recorded by the rotary encoder.

As expected for sound sources in the

horizontal plane, elevation estimations

present large errors during most of the

time.
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w ¼ 0:5 rad, rðb;w¼0:5Þ ¼ 0:33 rad, and l ¼ 0:6 rad ðr
¼ 0:36Þ in elevation, for instance.

In conclusion, the experiments were necessary to find

out that the critical part of the application of the present

model is related to the synchronicity of the ITD function sðtÞ
and its derivative _sðtÞ, because common methods of numeri-

cal differentiation of noisy signals introduce an undesired

delay between both functions. The results of the tests con-

firmed that the method yields excellent estimations of the

azimuth in the case of horizontal rotations with growing

errors as the elevation is increased. The method provides

rather bad estimations of the elevation, which improve with

rising elevation at the cost of the azimuthal measurement.

III. MOTION AND BINAURAL DOPPLER EFFECT

In the context of binaural hearing, the appearance of the

Doppler effect in combination with head movements or

motion of the sound source in the horizontal plane has been

studied by Jenison,27 who listed first order formulas showing

that source position, velocity and distance are observable

from combined measurements of interaural time delay,

Doppler effect and sound intensity. M€uller and Schnitzler28

stepped further into the subject by trying to find a relation-

ship between the interaural time delays and the Doppler

effect. The authors studied the Doppler effect on the head

considered as a single spot rather than on the binaural system

with two receivers. Neelon and Jenison29 focused on the

comparison of translatory and rotational source movements.

From observation they concluded that a source that is rotat-

ing around a binaural system does not produce any noticea-

ble Doppler shift. The present paper will prove evidence that

the Doppler shift exists in spite of these results. Only it is

very weak, in the case of slow rotations, as applied by

Neelon and Jenison.29 Iwaya et al.30 developed a rather com-

plex algorithm based on head-related impulse responses

(HRIRs) that adds the Doppler shift to the computations of

time delays. Kumon and Uozumi31 proposed an auditory sys-

tem using an extended Kalman filter (EKF), which fuses the

motion of a mobile robot platform with the sensory informa-

tion of a binaural ITD detector carried by the robot. The

applied model included the Doppler shift in the calculations.

In Sec. III A, three special cases of motion will be stud-

ied: (1) rotations of the binaural system (with a stationary

sound source); (2) rotations of the sound source about the

center (with a stationary binaural system); and (3)

translations of the sound source in parallel to the binaural

baseline (again with the binaural system staying stationary).

Finally, (4) the general case of an arbitrary trajectory of the

sound source will be investigated. The present developments

will prove that the Doppler shift between the binaurally per-

ceived waves and the first derivative of the interaural time

delay are equivalent. It must be recognized that motion is

described in the plane (R, L, S) and that the sound distance is

greater than 12k, so that the true sound direction coincides

with the slope of the asymptote of the related hyperbola of

confusion (/ ’ u) (cf. Fig. 8).

A. Theory

1. Rotating binaural system, stationary source

Assume that a stationary sound source is emitting a con-

tinuous 100 Hz sine-wave and is located in the far field at

b¼ 0. The corresponding ITD st¼0 ¼ smax is made visible in

Fig. 7 through the apparent delay between the left and right

signals. After a rapid rotation at �30 rad/s, the source is

located at b ¼ p rad with st¼0:1 ¼ �smax. The picture shows

that now the signal recorded on the right microphone lags

behind the left one. The question arises, how both signals,

originated from the same source change in shape and timing,

in order to perform the time shift during head motion.

Because the binaural system is totally independent of the

sound source, it has no influence on the sound generating

process. It continuously receives two complementary sound

signals that are both similar and distinctive. Their frequen-

cies at arrival must change, although the frequency is con-

stant at the source. This Doppler shift with a stationary

source and rotating receivers is due to the variations of the

pressure wave arrival times to each microphone.

Figure 8 outlines the plane containing the binaural sys-

tem and the sound source. The three relevant distances

dR; dL; d are unknown. If the binaural system rotates about

any axis passing through the center of the binaural system O,

the sound distance d does not change. However, the angle /,

and subsequently all other involved variables become func-

tions of time: /ðtÞ; dRðtÞ; dLðtÞ, etc. Note that for better

readability the reference to time will be subsequently

dropped, although it is implicit for all of the variables.

Following the development of Kneip and Baumann2 (p.

3110), both microphones R and L that form the binaural sys-

tem are the focuses of a hyperbola of confusion in the plane

FIG. 7. The right and left signals are

both exposed to frequency modulation

because of the Doppler effect. The thin

dotted line represents the ITD function

expressed as s=smax.
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(R, L, S), and the angle / representing the slope of the char-

acteristic asymptote of that hyperbola is defined by

cos / ¼ dL � dR

2k
¼ cs

2k
(20)

with

s ¼ dL � dR

c
: (21)

The variables may be differentiated with respect to time,

_s ¼ 1

c

d

dt
dLð Þ �

d

dt
dRð Þ

� �
: (22)

If dL or dR are decreased, the respective microphone verges

on the sound source. Therefore, let

vL ¼ �
d

dt
dLð Þ;

vR ¼ �
d

dt
dRð Þ: (23)

(It is assumed here that, depending on the direction of

motion on the radial axes, vL ¼ 6k~vLk and vR ¼ 6k~vRk.)
Finally, combining these equations results in

_s ¼ vR � vL

c
: (24)

Assuming that a pure tone is emitted by the source with

frequency fA, the wavelengths are the same at the source kA

and at the microphones (kR and kL), because the sound

source is stationary in the fluid medium. However, as the

microphones are moving, the speed of sound is virtually

increased (or decreased) by the speeds vR and vL, the fre-

quencies fR and fL must change accordingly,

kR ¼ kA;

cþ vRð Þ
fR

¼ c

fA

) fR ¼ 1þ vR

c

� �
fA

and similarly fL ¼ 1þ vL

c

� �
fA: (25)

Subtracting these equations leads to an expression of the bin-

aural Doppler shift,

fR � fL
fA

¼ 1

c
vR � vLð Þ ¼ _s: (26)

The role of the unknown source frequency fA in this equation

is to set up the magnitude of the frequency shift.

The law of cosines yields

dR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� B cos u

p
’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� B cos /

p
;

dL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B cos u

p
’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B cos /

p
;

A ¼ k2 þ d2;

B ¼ 2kd; (27)

d

dt
dRð Þ ¼ fR

_/ tð Þsin / tð Þ with

fR ¼
kd

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

d2
� 2k

d
cos / tð Þ

r : (28)

Important note: Eq. (28) is only true, because k and d are

constants,

) lim
d!1

fR ¼ k: (29)

Therefore, for sufficiently large d compared to k,

vR ¼ �k _/ðtÞ sin /ðtÞ; (30)

and similarly

vL ¼ þk _/ðtÞ sin /ðtÞ; (31)

whence

vL ¼ �vR: (32)

Applying Eq. (25),

fR þ fL ¼ fA 2þ vR þ vL

c

� �
¼ 2fA ) fA ¼

fR þ fL
2

:

(33)

Finally, by combining Eqs. (26) and (33), the derivative

of the ITD function may be written as the binaural Doppler

equation,

_s ¼ 2
fR � fL

fR þ fL
: (34)

In conclusion, rotations of the binaural system in any

plane produce relative changes of frequency that are equal in

all frequency band for a source away from the microphones.

2. Rotating sound source, stationary microphones

The development of the binaural Doppler equation from

Sec. III A 1 needs to be reconsidered here, because the

FIG. 8. A rotation of the binaural system in the plane (R, L, S) with the

involved distances and radial speeds. The picture emphasizes the true sound

direction u and the slope of the cone of confusion /, which coincide for

sound sources in the far field.
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conditions are not the same in the case of a moving sound

source and immobile binaural system (cf. Fig. 9). The wave-

lengths at the source kA and the receivers kR and kL are no

longer identical, because the source is moving in the fluid me-

dium. For instance, if the source is moving away from the

right receiver at speed vSR ¼ �vR, the wavelength of the sig-

nal generated at the source is lengthened by the traveled dis-

tance within the duration of one cycle (note that vSL ¼ �vL):

kR ¼ kA �
vR

fA
; kL ¼ kA �

vL

fA
) fR ¼ fA 1� vR

c

� ��1

;

fL ¼ fA 1� vL

c

� ��1

: (35)

If the involved speeds are much smaller than the speed

of sound, the binomial series approximation can be applied,

1þ qð Þa � 1þ aq; if q� 1

) fR � fL ¼ fA 1þ vR

c
� 1þ vL

c

� �� �
: (36)

Because the development of Eqs. (27) to (33) can be

applied to a rotating sound source and stationary micro-

phones, the Doppler shift obeys the same equations as dis-

cussed in Sec. III A 1,

fR � fL
fA

¼ 1

c
vR � vLð Þ ¼ _s; (37)

which leads to

) _s ¼ 2
fR � fL

fR þ fL
: (38)

In conclusion, both cases of rotation, either with rotating

auditory system, or with rotation of the source, produce the

same Doppler shift.

3. Shifting sound source, stationary microphones

The present section will analyze the case, where a

source is moving linearly at constant speed jvxj � c in paral-

lel to the binaural system, as shown in Fig. 10.

The motion of the sound source is described through the

equations

x ¼ x0 þ vxt ¼ d cos /
y ¼ y0:

�
(39)

Considering the triangles ðR; Sx; SÞ and ðL; Sx; SÞ, the radial

speeds can be expressed with

vR ¼ �vSR ¼ �vx cos /R ¼ �vx
x� k

dR
;

vL ¼ �vSL ¼ �vx cos /L ¼ �vx
xþ k

dL
: (40)

Because for sufficiently large sound distances, Eqs. (20) and

(27) can be applied,

dL � dR ¼ 2k cos /;

dL þ dR ¼
dL þ dRð Þ dL � dRð Þ

dL � dR
¼ d2

L � d2
R

2k cos /

’ k2 þ d2 þ 2kd cos /� k2 � d2 þ 2kd cos /
2k cos /

¼ 2d: (41)

Using Appollonius’ theorem of the median,

d2
L þ d2

R ¼ 2 k2 þ d2ð Þ

) dLdR ¼
dL þ dRð Þ2 � 2 k2 þ d2ð Þ

2
� d2 � k2:

(42)

Therefore,

vR þ vL ¼ �vx
dL x� kð Þ þ dR xþ kð Þ

dLdR

¼ �vx
dL þ dRð Þx� dL � dRð Þk

dLdR

¼ �vx
2d2 cos /� 2k2 cos /

d2 � k2

¼ �2vx cos / (43)

and

fR þ fL ¼ fA 2þ vR þ vL

c

� �
¼ 2fA 1� vx cos /

c

� �
:

(44)
FIG. 9. The sound source is rotating around the binaural system in the plane

(R, L, S).

FIG. 10. The sound source is moving in parallel to the binaural system in

the plane (R, L, S).
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Hence

fA ¼ 1� vx cos /
c

� ��1
fR þ fL

2
: (45)

In this equation, vx is supposed to be small in comparison to

c, so that the first factor can be considered as 1. Because Eq.

(37) is applicable here, the Doppler equation becomes

_s ¼ 2
fR � fL
fR þ fL

: (46)

In conclusion, slow parallel shifts of the binaural system

obey the same binaural Doppler rule as rotations.

4. Arbitrary trajectory of the sound source, stationary
microphones

The motion of the sound source on an arbitrary trajec-

tory in the plane (R, L, S) with speed vector~v ¼~vx þ~vy and

k~vk � c can be described with (cf. Fig. 11) the following:

x ¼ d cos /; _x ¼ vx;

y ¼ d sin /; _y ¼ vy; (47)

where, depending on the direction of motion on the x or y
axis,

vx ¼ 6k~vxk and vy ¼ 6k~vyk: (48)

The distance to the sound source is not necessarily constant,

so (cf. Appendix B),

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2ð Þ

p
;

_d ¼ vx cos /þ vy sin /;

/ ¼ arctan
y

x

� �
;

_/ ¼ vy cos /� vx sin /
d

: (49)

The distances to the microphones are defined by

dR ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� B cos /

p
;

dL ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B cos /

p
(50)

with

A ¼ k2 þ d2;

B ¼ 2kd (51)

and

_A ¼ 2d _d ;

_B ¼ 2k _d : (52)

The radial speed vR may be expressed with (cf. Fig. 11 and

Appendix C)

vR ¼ �vSR ¼ � _dR

¼ � d _d � kvx

dR
: (53)

And similarly,

vL ¼ �
d _d þ kvx

dL
: (54)

Therefore, applying Eq. (41) and Appolonius’ theorem [cf.

Eq. (42) and Appendix D]

vR þ vL ’ �2ðvx cos /þ vy sin /Þ: (55)

Finally, and similarly to Eq. (45),

fA ¼ 1� vx cos /þ vy sin /
c

� ��1
fR þ fL

2
’ fR þ fL

2
;

(56)

and from Eq. (37),

_s ¼ 2
fR � fL

fR þ fL
: (57)

In conclusion, the binaural Doppler equation is applicable

for any kind of motion of the sound source given the

involved speeds are much smaller than the sound velocity.

B. Applications

1. Generating a binaural image

The Doppler equations developed so far describe the

relationship between the binaurally received frequencies and

the ITD derivative. These equations may serve for the simu-

lation of motion in the context of binaural hearing.

Assume that a sound source in the far field is emitting a

pure tone of constant angular frequency xA ¼ 2pfA and zero

phase. The signal amplitude is 1,

sAðtÞ ¼ sin xAt: (58)
FIG. 11. The sound source is moving into an arbitrary direction in the plane

(R, L, S).
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Furthermore suppose that there are no signal losses and that

the binaural system is rotating in the plane (R, L, S) with

angular frequency x/ðtÞ ¼ _/ðtÞ. (Note that the function /ðtÞ
may be an arbitrary continuous function of time.)

The generated signals are the results of complementary

frequency modulations of the source signal. Applying Eqs.

(25), (30), and (31), the instantaneous frequencies can be

expressed with

fR tð Þ ¼ 1� k

c
x/ tð Þsin / tð Þ

� �
fA

¼ 1� smax

2
x/ tð Þsin / tð Þ

� �
fA ¼ 1þ _s

2

� �
fA;

fL tð Þ ¼ 1� _s
2

� �
fA: (59)

According to the rules of frequency modulation (cf.

Hartmann32), the signal received at the right microphone

changes to

sR tð Þ ¼ sin xA

ðt

0

1þ _s
2

	 

dt

 !

¼ sin xA tþ s
2

	 
� �
¼ sin xA tþ smax

2
cos / tð Þ

	 
� �
:

(60)

Note that the integration constant has been dropped.

Similarly,

sL tð Þ ¼ sin xA t� s
2

	 
� �

¼ sin xA t� smax

2
cos / tð Þ

	 
� �
: (61)

In the case of a constant angular frequency x/, the

sound direction changes according to the equation

/ðtÞ ¼ /0 þ x/t. Figure 12 shows binaural signals that have

been synthesized by applying Eqs. (60) and (61) to each

component of a complex sound signal.

In conclusion, because any desired physical motion of

the sound source can be analytically transformed into varia-

tions of the compound angle /, the developed frequency and

phase equations may be applied for the generation of binau-

ral sound signals. If the constructed sound signals are pre-

sented to a subject via headphones, it is likely that the

impression of source motion will be perceived. However, as

neither back/front nor up/down ambiguity is resolved, only

lateralization will be possible (cf. Plenge33).

2. Constructing a binaural beat

The important relationship described in Eq. (34) may be

illustrated through an experiment known in psychoacoustics

as the binaural beat (cf. Rayleigh,34 Licklider et al.,35 and

Akeroyd36). A typical form of the binaural beat consists in

presenting a 500 Hz sine wave to one ear and a 501 Hz sine

wave to the other (first curve in Fig. 13). Because the fre-

quency difference is very small, humans do not perceive two

separate tones. Instead a single tone is heard, which seems to

move across the head at a rate of 1 Hz from one side to the

other, then flip back, and restart its virtual motion. Because

the appreciation of direction reaches its extrema / ¼ 0; p
at smax and �smax, respectively, ITDs have been clipped in

Fig. 13.

This perception of motion directly follows from the bin-

aural Doppler shift equation Eq. (34). In fact, the time lag

between both signals (¼ITD), induced by the slightly shorter

wavelength of one signal, increases at a constant rate, until

both signals are in phase again.

FIG. 12. The right and left signals

have been generated by applying the

equations of Sec. III B 1 to each com-

ponent of a complex signal. Similarly

to Fig. 7, the thin dotted line represents

the ITD function expressed in s=smax.

FIG. 13. Binaural beat experiment.

Two pure tones were generated with

frequencies 500 and 501 Hz (1000 and

1002 Hz). Each signal was recorded at

the opposite input of the binaural sys-

tem. ITDs were calculated through the

running cross-correlation method. The

graph depicts the relative ITD values

s=smax, bounded to the interval

ð�1; 1Þ. In this experiment, the micro-

phone spacing 2 k was 17 cm.
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Assuming that the microphone spacing 2k ¼ 17 cm,

speed of sound c¼ 343 m/s, fR¼ 501 Hz and fL¼ 500 Hz, the

ITD derivative equals

_s
smax

¼ 2

0:17=c

1

1001
� 4 s�1: (62)

Saberi37 mentions that in a complex tone, for a higher

frequency component to maintain the same rate of change in

interaural delay as a lower component, the difference in fre-

quency at the contralateral ear must be proportionately

larger. The factor of proportionality can easily be determined

by rearranging Eq. (34),

fR ¼
2þ _s
2� _s

fL: (63)

In the example of Eq. (62), the factor of proportionality

in Eq. (63) is 1.002. Therefore, if fL¼ 1000 Hz, the contralat-

eral frequency must be fR¼ 1002 Hz. The second curve in

Fig. 13 shows that, in the case of these frequencies, the rate

of change in ITDs is the same as for 500 and 501 Hz.

However, the appreciation of laterality changes, because at

1 kHz, the signals are out of phase by 180� after 0.25 s. At

500 Hz, this phase shift is reached only after 0.5 s.

In conclusion, the binaural Doppler equation shows that

binaural pitch differences are directly related to dynamic

sound localization.

IV. DISCUSSION

From the epistemological point of view this work

clearly follows a deductive method by attempting to develop

a model for binaural localization of sound that does not pri-

marily rely on empirical data, but on a mathematical con-

struct. The presented model requires a few scaffolding

conditions. The first requirement consists of the (over)sim-

plification of the binaural system to a couple of acoustic

receivers in the free field. Such a system does not exist in na-

ture, nor can it be made artificially. Even with the best

design, real microphones are not reduced to infinitesimal

spots. Acoustic signals are never generated on such a spot ei-

ther. Sound waves represent complex phenomena that are

affected by diffraction in the presence of a head causing im-

portant bias to the fundamental formula relating ITDs to the

slope of the cone of confusion [Eq. (2)]. For that reason

Lambert11 and Duda et al.38 adapted this equation to spheri-

cal or ellipsoidal heads. Regarding such alternative condi-

tions of the initial geometry, further studies could examine

the present model development from the aspect of relevant

variants on Eq. (2).

Another constraint for this model is the far field assump-

tion, which allows a few essential simplifications in the

equation development. This somehow vague condition has

been made precise with two key sound distances 4k and 12k
yielding deviations between the slope of the cone of confu-

sion and the true sound direction less than 1� and 0.1�,
respectively.2 Further investigation of the near field could

start from the work by Shinn-Cunningham et al.,39 who

suggest considering a torus of confusion for sound sources

within the listeners reach.

An additional implicit assumption in the present paper

is that acoustic signals received by the microphones are iden-

tical in shape and spectrum, except for the modulation

effects due to the Doppler shift and the time delays caused

by path differences of arrival. In all of the practical experi-

ments made during the development of this work, it

appeared that in ordinary room environments this condition

could not be reliably controlled. In fact, disturbances such as

reverberation interference and standing waves do not neces-

sarily display in the same manner in each of the binaurally

received signals, mostly because the microphones occupy

different locations in space, introducing unpredictable errors

in ITD measurements. Hartmann40 reports that the quality of

sound localization in rooms depends on many different pa-

rameters such as direct-signal-to-reverberant-noise ratio,

room geometry, and presence of strong attack transients.

This explains the choices of an empty cinema theater as the

room environment, and a music playing radio as the sound

source used in the experiments of this work. Fortunately, the

application of the normalized cross-correlation function, as

the chosen method for the determination of ITDs, delivers a

measure for the quality of every single ITD estimation. The

maximum of this function defines the degree of coherence

between both audio signals41,42 and may therefore be used as

a weight in an adaptive digital filter, as mentioned in Sec.

II C. Note that the time-domain method deployed in our

experiments did not allow the separation of multiple sound

sources.

In order for Eq. (7) to yield a unique solution for b at

any moment in time, the value of the ITD s may not be zero,

which is equivalent to saying that the sound source may not

be located in the median plane (O, y, z). Also, angular speed

xb must be non-zero as well. However, according to Eqs. (1)

and (2), the trivial case where s¼ 0, yields b ¼ 6p=2.

Moreover, because Eq. (4) always holds, the sign is resolved

in this equation, if the binaural system is moving with a

known direction of rotation.

The analysis of error propagation in Sec. II B unveiled

that in the described model, uncertainty in azimuth dramati-

cally grows as the horizontal rotation speed slows to zero.

This does not necessarily apply to human hearing, where dif-

ferent sources of information, such as ITD, ILD, head-

related transfer function (HRTF), visual and motional cues,

come into play. For instance, Hirahara et al.15 showed that

sound localization accuracy in the horizontal or median

plane was better with the head rotating (even for slow rota-

tions) than when the head was stationary. Further experimen-

tal research could focus on the estimation of the error

bounds that are related to human processing of ITD and its

derivative.

If the state of the binaural system is defined by its orien-

tation in space with respect to the location of the static sound

source, there is confusion about the initial definition of the

binaural coordinate system, because only the x axis is

unequivocal. However, as soon as a system rotation is per-

formed, it stands to reason that the plane of rotation should

be chosen as the “horizontal” plane. In this case, the system
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is observable for both azimuth and elevation except for the

disambiguation about the upper or lower hemisphere.

System observability is seriously affected in the case of

motion of the sound source, which was explicitly excluded

in Sec. II, and reintroduced in Sec. III of this paper. The bin-

aural system cannot draw inferences about the instantaneous

speed of the sound source, and as a consequence, Eq. (7) is

underdetermined. The reference paper by Kneip and

Baumann2 mentions the possibility of completely solving

the localization problem through combined motion sequen-

ces. In the case of source motion, such a sequence could

override the system underdetermination. In fact, if the binau-

ral system is controlled with the source centering algorithm

displayed in Table I, it will always keep the moving sound

source in the median plane by tracking it. Without any refer-

ence to the “world” coordinate system this means that the

source will appear immobile in the binaural reference frame.

Any additional deliberate rotation of the system with known

angular speed will therefore solve the localization problem

within the limits explained in this paper.

The binaural Doppler equation developed in Sec. III

identifies weak pitch differences between the left and right

signals with the variation of ITDs. In other words, a direct

relationship has been established between spectral displace-

ments in the binaurally captured signals and sound localiza-

tion due to system motion. Yet, it can be concluded from

the definition of _s [Eq. (3)] that, at any moment in time,

there is a unique value of the ITD derivative for a known

angular speed and a specific sound direction in each lateral

hemisphere. Therefore, two or more sound sources that are

located on different cones of confusion will produce differ-

ent patterns of the binaural Doppler shift. We predict that

it might be possible to recognize these patterns in spectral

analyses of the auditory scene, which therefore could con-

tribute to the separation of multiple sound sources. A good

starting point for further research might be the work by

Roman and Wang.43

A final note must be addressed about the binaural

Doppler shift. Despite the promising way of determining

ITD derivatives indirectly via pitch differences, the authors

did not follow this approach in their experimental part,

because they considered the field of pitch detection beyond

the scope of the present work.

V. SUMMARY

In the first part, this paper developed the mathemati-

cal model for dynamic sound localization in space in the

case of rotations of the binaural baseline based on the

knowledge of the rotation speed and the differentiation

of ITDs with respect to time, showing that the sound

direction in the plane of rotation is exactly and instanta-

neously determined, whereas its orthogonal direction is

only yielded in magnitude without the specification of its

sign. The paper also evaluated the error propagation

through the established equations, clarifying that uncer-

tainties in the plane of rotation are bounded and mostly

depend on the sound direction in the orthogonal plane

and the rotation speed. By contrast, uncertainties in the

orthogonal plane were proven to grow excessively for

sound sources located either in that plane or in the plane

of rotation. Finally, the work presented experiments, in

order to examine the practical value of the model for

embedded real-time applications. The experiments did

not include comparative studies with other methods, but

focused on the solution of one major issue related to the

approach, namely, the synchronization of ITD values and

the values of the first ITD derivative. The second part

of the paper developed the binaural Doppler equation

stating that the first ITD derivative is equivalent to the

Doppler effect appearing between the two binaural

receivers. This equation was used to describe the com-

plementary frequency modulation taking place at each re-

ceiver and the binaural beat phenomenon in the case of

small frequency differences.
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NOMENCLATURE

Rðk; 0; 0Þ Position of the right microphone, k> 0

Lð�k; 0; 0Þ Position of the left microphone

2k Spacing between the two microphones

c Sound velocity (�343 m/s in air)

Sðx; y; zÞ Sound-source location

Sxyðx; y; 0Þ Orthogonal projection of S on the hori-

zontal plane

Sxðx; 0; 0Þ Orthogonal projection of S on the x axis

s Interaural time delay (ITD)

smax ¼ 2k=c Maximal detectable ITD

_s Derivative of ITD with respect to time

dR; dL; d Distance to sound source equal to

k~RSk; k~LSk; k ~OSk
dL � dR ¼ cs Path difference of arrival (c¼ sound

velocity)

vSR, vSL Speed of the sound source toward the

microphones, equal to the derivatives
_dR; _dL

vR, vL Speed of the microphones toward the

sound source, equal to �vSR;�vSL

sA Acoustic signal at the source

sR, sL Acoustic signals at the microphones

fA;xA; kA Frequency, angular frequency and

wavelength of the acoustic signal at

its source

fR; kR; fL; kL Frequencies and wavelengths of the acous-

tic signal as detected on each microphone

u 2 ½0; p� True sound direction in the plane (R, L,

S), referred to the origin O
/ 2 ½0; p� Slope of the cone of confusion, / ’ u

for sound sources in the far field

/R;/L Sound directions referred to the micro-

phones R, L
x/ ¼ _/ Variation of sound direction in the plane

(R, L, S)
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w 2 ½�p=2; p=2� Elevation, vertical angle between the

horizontal plane and the sound-source

vector

b 2 ½�p; p� Horizontal angle (¼azimuth), referenced

to the x axis

xb ¼ _b Variation of azimuth over time, i.e., rota-

tion speed about the z axis

hz Rotation angle about the z axis in

“world” referential frame

APPENDIX A: EQUATIONS (8) AND (9)

ðt1

t0

_s tð Þ
s tð Þ dt ¼

ðt1

t0

� _b tð Þtan b tð Þdt

() lnjs tð Þj
� �t1

t0
¼ lnj cos b tð Þj
� �t1

t0

() ln

���� s1

s0

���� ¼ ln

���� cos b1

cos b0

����
() s1

s0

¼ cos b1

cos b0

or
s0

s1

¼ cos b0

cos b1

:

Because b0 ¼ b1 þ hz [cf. Eq. (6)], this changes to (provided

s0 6¼ 0; s1 6¼ 0 and hz 6¼ 0)

s0

s1

¼ cos b1 cos hz � sin b1 sin hz

cos b1

¼ cos hz � tan b1 sin hz

() s0

sin hzs1

¼ cot hz � tan b1

() tan b1 ¼ cot hz �
s0

sin hzs1

:

APPENDIX B: EQUATION (49)

_/ ¼ x2

x2 þ y2

x _y � _xy

x2

¼ xvy � yvx

d2

¼ vy cos /� vx sin /
d

:

APPENDIX C: EQUATION (53)

vR¼�vSR¼� _dR

¼�
_A� _B cos/þB _cos/
� �

2dR

¼�2d _d� 2k _d cos/�2kd _/ sin/
� �

2dR

¼�d vx cos/þvy sin/
� �

�k vx cos2/þvy sin/cos/
� �

þ k vy sin/cos/�vx sin2/
� �

=dR

¼�
d vx cos/þvy sin/
� �

�kvx

dR
¼�d _d�kvx

dR
:

APPENDIX D: EQUATION (55)

vR þ vL ¼ �
dL d _d � kvx

� �
þ dR d _d þ kvx

� �
dLdR

¼ � dL þ dRð Þd _d � dL � dRð Þkvx

d2 � k2

’ �
2d2 vx cos /þ vy sin /
� �

� 2k2vx cos /

d2 � k2

¼ �2 vx cos /þ d2

d2 � k2
vy sin /

� �

¼ �2 vx cos /þ 1

1� k2=d2
vy sin /

� �

’ �2 vx cos /þ vy sin /
� �

:

APPENDIX E: LEAST-SQUARE LOW-PASS FILTER

Equation (16) in Sec. II C is derived according to

Sch€ußler.26 In contrast to the method used by this author, the

low-pass filter is developed here to the first order only, which

is why ordinary algebraic equations appear more appropriate

than the original vector notation.

Assume that s(t) describes a noisy signal in function of

time. A least-square filter for this function can be designed

as a discrete polynomial approximation p½j� that is evaluated

at M values of the input signal s(t), which have been taken at

equal time steps Dt with respect to the current time

tM�1 ¼ ðM � 1ÞDt. The equation of such a first-order poly-

nomial may be written as

sj ¼ sðtjÞ � p½j� ¼ a0 þ a1tj: (E1)

Ultimately, if Dt! 0, the segment defined by p½j� can

be considered as a superposable model for the signal curve

within the same interval. However, because this model is not

correct for finite values of Dt, the best linear fit can be

obtained by minimizing the sum of the squared residuals Rr,

Rr ¼
XM�1

j¼0

½sj � ða0 þ a1tjÞ�2: (E2)

The sum Rr is unknown. However, it can be considered

a function of both values a0 and a1, and its minimum can be

found, if both partial derivatives are zeroed:

@Rr

@a0

¼ �2
XM�1

j¼0

sj � a0 þ a1tjð Þ½ � ¼ 0

@Rr

@a1

¼ �2
XM�1

j¼0

tj sj � a0 þ a1tjð Þ½ � ¼ 0:

8>>>>>><
>>>>>>:

(E3)

Gauss’s method of the least-squares yields a0 and a1 as

the solution of the system of equations that follows from Eq.

(E3),44
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Ma0 þ ð
X

tjÞa1 ¼
X

sj
X
tj

�
a0 þ


X
t2j

�
a1 ¼

X
tjsj:

8<
: (E4)

Using the summation terms c1 ¼
P

tj; c2 ¼
P

t2
j , and

c3 ¼ Mc2 � c2
1, the solutions for a0, a1 may be written as

a0 ¼
c2

X
sj � c1

X
tjsj

c3

;

a1 ¼
M
X

tjsj � c1

X
sj

c3

: (E5)

Under the assumption of constant Dt, the terms of Eq. (E5)

may be rewritten,

c1 ¼
XM�1

j¼0

tj ¼
XM�1

j¼0

jDt ¼ Dt
XM�1

j¼0

j¼! Dtc01;

c2 ¼
XM�1

j¼0

t2
j ¼ Dt2

XM�1

j¼0

j2¼! Dt2c02;

c3 ¼ Mc2 � c2
1 ¼ Dt2ðMc02 � c021 Þ¼

!
Dt2c03;X

tjsj ¼ Dt
X

jsj; (E6)

leading to the equations

a0 ¼
c02
X

sj � c01
X

jsj

c03
;

a1 ¼
M
X

jsj � c01
X

sj

Dtc03
(E7)

The summations of consecutive integers and their

squares are standard operations of sequences that can be eas-

ily pre-calculated.

c01 ¼
XM�1

j¼0

j ¼ MðM � 1Þ=2;

c02 ¼
XM�1

j¼0

j2 ¼ MðM � 1Þð2M � 1Þ=6; (E8)

which is why

a0 ¼
2 2M � 1ð Þ

X
sj � 6

X
jsj

M M þ 1ð Þ ;

a1 ¼
12
X

jsj � 6 M � 1ð Þ
X

sj

Dt �M M2 � 1ð Þ : (E9)

Because the polynomial p½j� should be evaluated at tM�1, in

order to yield the most actual estimation,

p M� 1½ � ¼ a0 þ a1 M� 1ð ÞDt ¼

XM�1

j¼0

6j� 2 M� 2ð Þ
� �

sj

M Mþ 1ð Þ :

(E10)

This low-pass filtering technique can be developed for

higher orders using Faulhaber’s sums of powers formula (cf.

Knuth45).
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